Voting	Lattices	Mix-Net	References
00	000	000000	

Shorter Lattice-based Zero-Knowledge Proofs for the Correctness of a Shuffle

Javier Herranz Ramiro Martínez Manuel Sánchez

Voting	Lattices	Mix-Net	References
●0	000	000000	

e-Voting

Voting	Lattices	Mix-Net	References
●0	000	000000	

e-Voting

Voting	Lattices	Mix-Net	References
0•			

Definition

A Zero-Knowledge Proof has the following properties:

- Completeness: if an honest P knows a valid witness and both follow the protocol then in the last step V accepts.
- Soundness: a malicious prover can not convince a verifier of a false statement.
- Zero-Knowledge: the conversation does not leak any relevant information besides what it is intended to prove.

Voting	Lattices	Mix-Net	References
0•			

Definition

A Zero-Knowledge Proof has the following properties:

Completeness: if an honest *P* knows a valid witness and both follow the protocol then in the last step *V* accepts.
 Image: Image:

Soundness: a malicious prover can not convince a verifier of a false statement.

Zero-Knowledge: the conversation does not leak any relevant information besides what it is intended to prove.

Voting	Lattices	Mix-Net	References
0•			

Definition

A Zero-Knowledge Proof has the following properties:

- Completeness: if an honest *P* knows a valid witness and both follow the protocol then in the last step *V* accepts.
 Image: Image:
- Soundness: a malicious prover can not convince a verifier of a false statement.
 S
- Zero-Knowledge: the conversation does not leak any relevant information besides what it is intended to prove.

Voting	Lattices	Mix-Net	References
0•			

Definition

A Zero-Knowledge Proof has the following properties:

- Completeness: if an honest *P* knows a valid witness and both follow the protocol then in the last step *V* accepts.
 Image: Image:
- Soundness: a malicious prover can not convince a verifier of a false statement.
 - S 🖸
- Zero-Knowledge: the conversation does not leak any relevant information besides what it is intended to prove.
 ?

Voting	Lattices	Mix-Net	References
	●00		

Ring-Learning With Errors

Let s(x) be a secret polynomial in $\mathcal{R}_q = \mathbb{Z}_q[x]/\langle x^n + 1 \rangle$ and χ a probability distribution over \mathcal{R}_q . Choose $a_i \leftarrow_R \mathcal{R}_q$ and $e_i \leftarrow_R \chi$ and compute

$$a_i \cdot s + e_i$$
.

Definition (Decisional-RLWE)

Distinguish samples $\{(a_i, a_i \cdot s + e_i) \mid a_i \leftarrow_R \mathcal{R}_q, e_i \leftarrow_R \chi\}$ from uniformly random $\{(a_i, b_i) \mid a_i, b_i \leftarrow_R \mathcal{R}_q\}$.

Definition (Search-RLWE)

Find *s* given polynomially many RLWE samples $\{(a_i, a_i \cdot s + e_i)\}$.

Voting	Lattices	Mix-Net	References
	000		

Ring-Learning With Errors

Let s(x) be a secret polynomial in $\mathcal{R}_q = \mathbb{Z}_q[x]/\langle x^n + 1 \rangle$ and χ a probability distribution over \mathcal{R}_q . Choose $a_i \leftarrow_R \mathcal{R}_q$ and $e_i \leftarrow_R \chi$ and compute

$$a_i \cdot s + e_i$$
.

Definition (Decisional-RLWE)

Distinguish samples $\{(a_i, a_i \cdot s + e_i) \mid a_i \leftarrow_R \mathcal{R}_q, e_i \leftarrow_R \chi\}$ from uniformly random $\{(a_i, b_i) \mid a_i, b_i \leftarrow_R \mathcal{R}_q\}$.

Definition (Search-RLWE)

Find *s* given polynomially many RLWE samples $\{(a_i, a_i \cdot s + e_i)\}$.

Voting	Lattices	Mix-Net	References
	000		

Ring-Learning With Errors

Let s(x) be a secret polynomial in $\mathcal{R}_q = \mathbb{Z}_q[x]/\langle x^n + 1 \rangle$ and χ a probability distribution over \mathcal{R}_q . Choose $a_i \leftarrow_R \mathcal{R}_q$ and $e_i \leftarrow_R \chi$ and compute

$$a_i \cdot s + e_i$$
.

Definition (Decisional-RLWE)

Distinguish samples $\{(a_i, a_i \cdot s + e_i) \mid a_i \leftarrow_R \mathcal{R}_q, e_i \leftarrow_R \chi\}$ from uniformly random $\{(a_i, b_i) \mid a_i, b_i \leftarrow_R \mathcal{R}_q\}$.

Definition (Search-RLWE)

Find *s* given polynomially many RLWE samples $\{(a_i, a_i \cdot s + e_i)\}$.

Voting	Lattices	Mix-Net	References
00	0●0	000000	

LPR encryption scheme

- Key Generation: given a ←_R R_q and s, e ←_R χ, output the secret key s and the public key (a, b = a ⋅ s + e).
- **Encryption**: given an *n*-bit message $z \in \{0, 1\}^n$, choose $r, e_u, e_v \leftarrow_R \chi$. Output:

$$(u, v) = (a \cdot r + e_u, b \cdot r + e_v + \lfloor \frac{q}{2} \rfloor z) \in \mathcal{R}_q \times \mathcal{R}_q$$

Decryption:

$$v - u \cdot s = (r \cdot e - s \cdot e_u + e_v) + \lfloor \frac{q}{2} \rfloor \cdot z$$

Voting	Lattices	Mix-Net	References
00	0●0	000000	

LPR encryption scheme

- Key Generation: given a ←_R R_q and s, e ←_R χ, output the secret key s and the public key (a, b = a ⋅ s + e).
- **Encryption**: given an *n*-bit message $z \in \{0, 1\}^n$, choose $r, e_u, e_v \leftarrow_R \chi$. Output:

$$(u, v) = (a \cdot r + e_u, b \cdot r + e_v + \lfloor \frac{q}{2} \rfloor z) \in \mathcal{R}_q \times \mathcal{R}_q$$

Decryption:

$$v - u \cdot s = (r \cdot e - s \cdot e_u + e_v) + \lfloor \frac{q}{2} \rfloor \cdot z$$

Voting	Lattices	Mix-Net	References
00	0●0	000000	

LPR encryption scheme

- Key Generation: given a ←_R R_q and s, e ←_R χ, output the secret key s and the public key (a, b = a ⋅ s + e).
- ► **Encryption**: given an *n*-bit message $z \in \{0, 1\}^n$, choose $r, e_u, e_v \leftarrow_R \chi$. Output:

$$(u, v) = (a \cdot r + e_u, b \cdot r + e_v + \lfloor \frac{q}{2} \rfloor z) \in \mathcal{R}_q \times \mathcal{R}_q$$

Decryption:

$$v - u \cdot s = (r \cdot e - s \cdot e_u + e_v) + \lfloor \frac{q}{2} \rfloor \cdot z$$

Voting	Lattices	Mix-Net	References
	000		

Towards efficient ZKPoK for a lattice shuffle

Existing techniques

- Existing proposals require linear space [CMM17; Str19; CMM19].
- Efficient arguments of knowledge exist for circuit satisfiability with sublinear size [Bau+18].

	Lattices	Mix-Net	References
00	000	00000	

Re-encryption as a circuit

Re-encryption can be done adding an encryption of 0, that is, it only requires multiplications and additions in \mathcal{R}_q :

$$(u', v') = (u, v) + \text{Enc}(pk, 0, r', e'_u, e'_v)$$

Small elements

▶ The main issue is to prove that something is small.

• We prove $(r'_i + B) \dots (r'_i + 1)r'_i(r'_i - 1) \dots (r'_i - B) = 0.$

• Analogously for
$$e'_{u,i}$$
 and $e'_{v,i}$.

Voting	Lattices	Mix-Net	References

Re-encryption as a circuit

Re-encryption can be done adding an encryption of 0, that is, it only requires multiplications and additions in \mathcal{R}_q :

$$(u', v') = (u, v) + \text{Enc}(pk, 0, r', e'_u, e'_v)$$

Small elements

- The main issue is to prove that something is small.
- We prove $(r'_i + B) \dots (r'_i + 1)r'_i(r'_i 1) \dots (r'_i B) = 0.$

Voting	Lattices	Mix-Net	References
00	000	0●0000	

Permutation as a circuit

$$\overline{u}_1 = (1-b) \cdot u_1 + b \cdot u_2$$

 $\overline{u}_2 = (1-b) \cdot u_2 + b \cdot u_1$

Voting	Lattices	Mix-Net	References
00	000	00●000	

Figure: Beneš Network $B^{(N)}$

Lattices	Mix-Net	References
	000000	

Shorter Lattice-based Zero-Knowledge Proofs for the Correctness of a Shuffle

- Circuit size of $M \in \mathcal{O}\left(N \cdot \left(n\hat{k}\sigma + n^{\log_2 3} + n\log(N)\right)\right)$ gates.
- Communication complexity: proof of size $\mathcal{O}(\sqrt{M \log^3(M)} \log(Q)).$

Voting	Lattices	Mix-Net	References
		000000	

Attention

Before the rounding step of the decryption

$$v - u \cdot s = \left(\sum r \cdot e - s \cdot \sum e_u + \sum e_v\right) + \left\lfloor \frac{q}{2} \right\rfloor \cdot z$$

the result depends on the secret key s and the error terms $\sum e_u$ and $\sum e_v$. This has to be considered to avoid any leakage of information.

Voting	Lattices	Mix-Net	References
00	000	00000●	

Shorter Lattice-based Zero-Knowledge Proofs for the Correctness of a Shuffle

Javier Herranz Ramiro Martínez Manuel Sánchez

Voting 00	Lattices 000	Mix-Net 000000	References
Bibliography	/ I		
[Bau+18]	Carsten Baum et al. "S Zero-Knowledge Argum In: <i>CRYPTO 2018, Pai</i> and Alexandra Boldyrer Barbara, CA, USA: Spr Aug. 2018, pp. 669–69 10.1007/978-3-319-	ub-linear Lattice-Based lents for Arithmetic Circ <i>t II</i> . Ed. by Hovav Shack /a. Vol. 10992. LNCS. S inger, Heidelberg, Germa 9. DOI: 96881-0_23.	uits". ham anta any,
[CMM17]	Nuria Costa, Ramiro N "Proof of a Shuffle for In: Secure IT Systems. Aikaterini Mitrokotsa, a Cham: Springer Interna pp. 280–296. ISBN: 978	artínez, and Paz Morillo Lattice-Based Cryptogra Ed. by Helger Lipmaa, and Raimundas Matulevi tional Publishing, 2017, 8-3-319-70290-2.	ıphy" . čius.

Lattices	Mix-Net	References

Bibliography II

[CMM19] Núria Costa, Ramiro Martínez, and Paz Morillo. "Lattice-Based Proof of a Shuffle". In: FC 2019 Workshops. Ed. by Andrea Bracciali et al. Vol. 11599. LNCS. Frigate Bay, St. Kitts and Nevis: Springer, Heidelberg, Germany, Feb. 2019, pp. 330–346. DOI: 10.1007/978-3-030-43725-1_23.

 [Str19] Martin Strand. "A Verifiable Shuffle for the GSW Cryptosystem". In: FC 2018 Workshops. Ed. by Aviv Zohar et al. Vol. 10958. LNCS. Nieuwpoort, Curaçao: Springer, Heidelberg, Germany, Mar. 2019, pp. 165–180. DOI: 10.1007/978-3-662-58820-8_12.